Title: High-Nuclearity Ln210Al140 Clusters: Neonates of Open Hollow Dodecahedral Cage Families
Authors: Man-Ting Chen, Qiao-Fei Xu, Mukeremu Aibibula, Xiang-Jian Kong, La-Sheng Long*, Lan-Sun Zheng
Abstract: Open hollow dodecahedral cage clusters have long been a coveted target in synthetic chemistry, yet their creation poses immense challenges. Here we report two open hollow dodecahedral lanthanide–aluminum (Ln–Al) heterometallic cage clusters, namely, [Ln210Al140(μ2-OH)210(μ3-OH)540(OAc)180(H2O)156](ClO4)120·(MeCN)x·(H2O)y, (Ln = Dy and x = 27, y = 300 for 1; Ln = Y and x = 28, y = 420 for 2). Remarkably, the 350 metal atoms in 1 and 2 display a Keplerate-type four-shell structure of truncated icosidodecahedron@dodecahedron@dodecahedron@icosidodecahedron. The diameter of the cationic cluster in 1 is approximately 5.0 nm, with an inner cavity diameter of about 2.8 nm and a window diameter of roughly 0.66 nm. The cluster in 1 boasts an accessible inner void volume of up to 15,000 Å3. Notably, these cage clusters maintain stability in water, and the truncated icosidodecahedrons in 1 and 2 are the first of their kind synthesized to date. Given that the open hollow dodecahedral Ln–Al cage cluster has never been reported before, this work represents a member in the family of hollow open dodecahedral cages.
Full-Link: https://pubs.acs.org/doi/10.1021/jacs.4c07231