报告题目: 二维材料系统中的质子输运性质
报 告 人:胡晟 博士
英国曼彻斯特大学
时 间 : 2016年12月29日下午16:00-17:30
地 点 : 化学楼234室
报告摘要:
Graphene is increasingly explored as a possible platform for developing novel separation technologies [1,2]. However, a perfect graphene monolayer is impermeable to all atoms and molecules under ambient conditions [3, 4]– only accelerated atoms possess the kinetic energy required to do this [5]. In this talk I will present proton transport through one-atom-thick membranes, including graphene, hexagonal boron nitride (h-BN) and molybdenum disulphide (MoS2). I will first describe a Nafion based proton injection [6] experimental setup in which proton transport signals are detected from transport and mass spectroscopy measurements; I will then present that proton transport can be further enhanced by decorating the graphene and h-BN membranes with catalytic metal nanoparticles. The results demonstrate that monolayers of graphene and h-BN are highly permeable to thermal protons under ambient conditions, while no proton transport is detected for thicker crystals such as monolayer MoS2, bilayer graphene or multilayer h-BN [7]. At last, I’ll introduce a hydrogen isotope separation technique. Our result shows a hydrogen/deuterium separation ratio as high as 10, which is significantly higher than classical separation methods (usually with ratio about 1.5).
1. S. P. Koenig, L. Wang, J. Pellegrino, J. S. Bunch. Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7, 728–732 (2012).
2. S. Garaj et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–1933 (2010).
3. J. S. Bunch et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).
4. V. Berry. Impermeability of graphene and its applications. Carbon 62, 1–10 (2013).
5. E. Stolyarova et al. Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett. 9, 332–337 (2009).
6. H. Morgan, R. Pethig, G. T. Stevens. A proton-injecting technique for the measurement of hydration-dependent protonic conductivity. J. Phys. E 19, 80–82 (1986).
7. S. Hu et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).
8. M. Lozada-Hidalgo, S. Hu et al., Sieving hydrogen isotopt through two-dimensional crystals. Science, 351, 68(2016).
专家介绍:
胡晟博士,南京大学物理系06级本科生,2010年9月毕业后前往英国曼彻斯特大学物理系直接攻读博士学位,师从诺贝尔物理学奖得主Andre Geim教授,从事质子在石墨烯等二维材料中的传输研究。2014年5月获得博士学位后在Andre Geim教授课题组继续进行博士后研究至今。主要研究方向为二维材料中的物质输运。主要深入研究了质子在垂直于二维材料basal平面方向的传输这一基本科学问题,发展了一套在固相中质子注入与传输测量的研究技术,系统研究了质子在二维材料电子云中的传输机理,并以此为基础,建立了一套以二维材料为平台的氢同位素的高效分离方法。相关成果已发表在Nature(第一作者)和Science(共同第一作者)上,被他人引用100余次。
欢迎各位老师和同学参加!
能源材料化学协同创新中心办公室