报告题目:Bio-inspired Microfluidics
报 告 人:侯旭 博士
哈佛大学医学院
时 间:2015年9月11日(星期五)上午9:30
地 点:卢嘉锡楼202报告厅
欢迎各位老师同学参加!
厦门大学谱学分析与仪器教育部重点实验室
biwn必赢
2015年9月9日
报告人简历:
侯旭,02级本科毕业于四川大学创新人才班,生物医学工程。于2006年保送国家纳米科学中心,江雷研究员课题组,攻读物理化学博士学位,并于2011年七月获得博士学位。于2012年一月加入哈佛大学Aizenberg教授课题组开展博士后仿生智能材料的研究工作。将于今年下半年成为哈佛大学医学院讲师加入khademhosseini教授课题组。2008年以来,已经发表27篇学术论文和1本学术专著,其中SCI学术论文27篇,其中第一作者文章10篇 (Nature, Chem. Soc. Rev., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater., ACS Nano等),总引用次数大于1350。相关研究工作受到了科学界广泛的关注,先后被Nature杂志和Nature China 网站highlight。曾获得全国胶体与界面化学优秀成果一等奖和全国卢嘉锡优秀研究生奖。获得中科院研究生院三好学生和三好学生标兵称号。获得2011年中科院研究生院优秀毕业生和中科院研究生院院长优秀奖;2012年度中科院优秀博士学位论文。曾代表江雷研究员担任第十二届全国青年材料科学技术研讨会纳米材料与技术会场主席,主持相关大会报告,并做了大会邀请报告。2009年,被邀请代表中国参加国际能源机构组织在澳大利亚举办的能源与环保学术交流。2010年,获得了新加坡生物工程协会的学生旅行奖,并应邀在第五届国际生物工程和纳米技术大会上做大会口头报告;同时2010年和2011年还连续获得了美国联邦政府,美国国防部会议全额奖学金资助,作为中国科研机构唯一的代表赴美进行了学术访问和交流参加国际化学生物防御科学技术大会,并应邀做大会报告。2013年获得中国科学院推荐提名参选Springer Theses Prize. 曾担任SCI杂志Journal of Nanomaterials的客座编辑及Adv. Mater., Electrochem. Comm.等十多个SCI学术期刊的审稿人,并获得了2013年美国国家博士后旅行奖和2014年哈佛大学的博士后事业发展奖。2014年7月入选SciFinder化学领域未来领袖。
报告摘要:
Nature provides a huge range of biological materials with various smart functions over millions of years of evolution, and serves as a big source of bio-inspiration for biomimetic materials. Advances in microfluidics are revolutionizing many disciplines, such as molecular biology, drug discovery, medical diagnostics, and materials science. Despite their significance and over three decades of research, the fouling of microfluidic networks when components from fluids irreversibly adhere to channel surfaces, remains a challenging and unresolved issue. Various strategies have been proposed to prevent surface fouling, such as using low surface energy materials to fabricate the microfluidic channels or chemical modification of material surfaces, but these approaches have not effectively resolved the problem. To address the challenge, here we report a new strategy to create universal antifouling microfluidic networks that show an outstanding inertness to various chemicals and organic solvents, resist adhesion from particles and proteins to complex fluids such as whole blood. Our approach—inspired by natural tubular organs—could provide a platform for many applications of microchannel systems and accelerate the development of high-performance microfluidic devices.